- class HH_REFRACTORINESS(par=None)[source]¶
Refractoriness of the HH model.
- simulate(tspan=None, *args)[source]¶
Simulate the HH model.
- Parameters:
- tspanarray_like, optional
Time points (ms) at which to solve for membrane potential and gating variables. Default is np.arange(0, 50, 0.01).
- argstuple, optional
Additional arguments to pass to the ODE solver.
- Returns:
- dict
Dictionary with keys “t”, “v”, “m”, “h”, “n” and values being the corresponding time points and membrane potential and gating variables.
- class Erisir_Burst(par={})[source]¶
The Erisir neuron with a slow potassium current that is strengthened by firing which turns the neuron into a burster.
Reference: An introduction to modeling neuronal dynamics, Borgers, Chapter 19.
- class HH(par={})[source]¶
Hudgkin Huxley Model
>>> par = {'i_ext': 1.5, 't_end': 100.0, 'v0': -70.0, 'dt': 0.01} >>> model = HH(par) >>> sol = model.simulate() >>> plt.plot(sol['t'], sol['v'])
- class HH_F_I_CURVE(par={})[source]¶
- class HH_2D_F_I_CURVE(par={})[source]¶
- simulate_F_I(vec_i_ext, tspan=None, directions='both')[source]¶
simulate F-I curve for reduced HH model
- Parameters:
- vec_i_extarray_like
external current
- tspanarray_like, optional
time span, by default None
- directionsstr or list, optional
direction of current, by default ‘both’ options: ‘forward’, ‘backward’, ‘both’
- Returns:
- dict {i_ext, freq}
- class Inapik(par: dict = {})[source]¶
Inapik neuron model
>>> par = {'} >>> model = Inapik(par) >>> sol = model.simulate() >>> plt.plot(sol['t'], sol['v'])
- class LIF(par={})[source]¶
Linear Integrate-and-Fire (LIF) Model
>>> par = {'i_ext': 0.11, 't_end': 100.0, 'v0': -70.0, 'dt': 0.01} >>> model = LIF(par) >>> sol = model.simulate() >>> plt.plot(sol['t'], sol['v'])
- class LIF_Addapt(par={})[source]¶
Linear Integrate-and-Fire (LIF) Model with Adaptation
>>> par = {'i_ext': 0.13, 't_end': 100.0, 'v0': -70.0, 'dt': 0.01} >>> model = LIF_Addapt(par) >>> sol = model.simulate() >>> plt.plot(sol['t'], sol['v'])
- class RTM(par: dict = {})[source]¶
Reduced Traub-Miles Model of a Pyramidal Neuron in Rat Hippocampus
>>> par = {'i_ext': 1.5, 't_end': 100.0, 'v0': -70.0, 'dt': 0.01} >>> model = RTM(par) >>> sol = model.simulate() >>> plt.plot(sol['t'], sol['v'])
- class RTM_M(par: dict = {})[source]¶
Reduced Traub-Miles neuron model with M-current Simulate the model with parameters given in the dictionary par:
>>> par = {'i_ext': 1.5, 't_end': 100.0, 'v0': -70.0, 'dt': 0.01} >>> model = RTM_M(par) >>> sol = model.simulate() >>> plt.plot(sol['t'], sol['v'])
- class RTM_2D(par: dict = {})[source]¶
Reduced 2-dimensional Traub-Miles Model of a Pyramidal Neuron in Rat Hippocampus as defined in Eq. 12.1-2 in [1]
References: [1] Börgers, C., 2017. An introduction to modeling neuronal dynamics (Vol. 66). Berlin: Springer.
- class RTM_F_I_CURVE(par={})[source]¶
- class RTM_ins(par: dict = {})[source]¶
Reduced Traub-Miles Model of a Pyramidal Neuron in Rat Hippocampus with nearly instantaneous rise synapse.